Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics

Cell. 2019 Mar 7;176(6):1325-1339.e22. doi: 10.1016/j.cell.2019.01.022. Epub 2019 Feb 28.

Abstract

Lineage tracing provides key insights into the fate of individual cells in complex organisms. Although effective genetic labeling approaches are available in model systems, in humans, most approaches require detection of nuclear somatic mutations, which have high error rates, limited scale, and do not capture cell state information. Here, we show that somatic mutations in mtDNA can be tracked by single-cell RNA or assay for transposase accessible chromatin (ATAC) sequencing. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their utility as highly accurate clonal markers to infer cellular relationships. We track native human cells both in vitro and in vivo and relate clonal dynamics to gene expression and chromatin accessibility. Our approach should allow clonal tracking at a 1,000-fold greater scale than with nuclear genome sequencing, with simultaneous information on cell state, opening the way to chart cellular dynamics in human health and disease.

Keywords: chronic myeloid leukemia; colon cancer; hematopoiesis; lineage tracing; mitochondrial DNA; mtDNA; sequencing; single cell genomics; somatic mutations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Cell Lineage
  • Chromatin
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / pathology
  • DNA, Mitochondrial / genetics*
  • Genomics / methods
  • HEK293 Cells
  • Hematopoietic Stem Cells / physiology
  • High-Throughput Nucleotide Sequencing / methods
  • Humans
  • Mitochondria / genetics*
  • Mutation
  • Single-Cell Analysis
  • Transposases

Substances

  • Chromatin
  • DNA, Mitochondrial
  • Transposases