Human mesenchymal stem cell-based tumor therapeutic gene delivery is regarded as a promising strategy for the treatment of glioblastoma (GBM). However, the efficiency of these stem cells to home to the target sites limits their potential curative effect and clinical application. In this work, we provide a novel pretreatment approach for enhancing the homing capacity of human adipose-derived mesenchymal stem cells (hAMSCs) for stem cell-based tumor gene delivery for GBM therapy. Pre-exposure of these stem cells to TGF-β resulted in enhanced homing ability to GBM through increasing CXC chemokine receptor 4 (CXCR4) expression, as evidenced by a diminishing homing capacity when inhibition of the TGF-β receptor II and CXCR4 was applied. In addition, by pretreating hAMSCs expression of tumor necrosis factor-related apoptosis-inducing ligand with TGF-β, we achieved significant enhancements in the therapeutic efficacy as demonstrated by an increased number of migrated hAMSCs to target sites, decreased tumor volume, and prolonged survival time in a murine model of GBM. These findings highlight a straightforward method in which cell preconditioning methodology is utilized to promote therapeutic efficacy of a biological treatment for GBM.
Keywords: (TGF-β); Glioblastoma; Mesenchymal stem cells; Therapeutic efficacy; Transforming growth factor-β.
© 2019 American Association of Neuropathologists, Inc. All rights reserved.