False discovery control for penalized variable selections with high-dimensional covariates

Stat Appl Genet Mol Biol. 2018 Dec 15;17(6):/j/sagmb.2018.17.issue-6/sagmb-2018-0038/sagmb-2018-0038.xml. doi: 10.1515/sagmb-2018-0038.

Abstract

Modern bio-technologies have produced a vast amount of high-throughput data with the number of predictors much exceeding the sample size. Penalized variable selection has emerged as a powerful and efficient dimension reduction tool. However, control of false discoveries (i.e. inclusion of irrelevant variables) for penalized high-dimensional variable selection presents serious challenges. To effectively control the fraction of false discoveries for penalized variable selections, we propose a false discovery controlling procedure. The proposed method is general and flexible, and can work with a broad class of variable selection algorithms, not only for linear regressions, but also for generalized linear models and survival analysis.

Keywords: dimension reduction; false discovery; penalized regression; variable selection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Computer Simulation
  • Models, Statistical*
  • Reproducibility of Results