Purpose: To determine if there is structural and functional recovery of the retina from light induced retinal degeneration, and to evaluate the role of the oxidative stress response elements Nrf2, SOD1, DJ-1, and Parkin in such a recovery process.
Methods: Eyes from C57BL/6J (B6J) mice and from oxidative stress response-deficient strains of mice were treated with intense light using the fundus camera-delivered light-induced retinal degeneration (FCD-LIRD) model. Fundus photographs, optical coherence tomography (OCT) images, and electroretinography (ERG) responses were obtained before the injury, during the "maximal injury phase" (days 4-7) and during the "recovery phase" (days 14-16) post light exposure and were evaluated for retinal damage and assessed for evidence of recovery from the injury.
Results: We demonstrate that mice treated with a sub-lethal FCD-LIRD protocol show an initial acute retina injury phase peaking between days 4 to 7 followed by a recovery phase in which the outer retinal thickness/volume and retinal function partially recover. These observations are reproduced in B6J mice and in mice lacking oxidative stress response enzymes (SOD1, DJ-1, and Parkin) or the oxidative stress response master regulator Nrf2.
Conclusions: Our data indicate that retinal recovery from injury can proceed via pathways that are independent from the common oxidative stress response elements Nrf2, SOD1, DJ-1, and Parkin. Furthermore, the model of retinal recovery from injury that we describe here mimics changes seen in a variety of clinical entities and may provide an excellent platform for dissecting general pathways of retinal recovery from sub-lethal injury.