Objective: The purpose of this study is to investigate the dosimetric feasibility of delivering focal dose to multiparametric (mp) MRI-defined DILs in CT-based high-dose-rate (HDR) prostate brachytherapy with MR/CT registration and estimate its clinical benefit.
Methods: We retrospectively investigated a total of 17 patients with mp-MRI and CT images acquired pre-treatment and treated by HDR prostate brachytherapy. 21 dominant intraprostatic lesions (DILs) were contoured on mp-MRI and propagated to CT images using a deformable image registration method. A boost plan was created for each patient and optimized on the original needle pattern. In addition, separate plans were generated using a virtually implanted needle around the DIL to mimic mp-MRI guided needle placement. DIL dose coverage and organ-at-rick (OAR) sparing were compared with original plan results. Tumor control probability (TCP) was estimated to further evaluate the clinical impact on the boost plans.
Results: Overall, optimized boost plans significantly escalated dose to DILs while meeting OAR constraints. The addition of mp-MRI guided virtual needles facilitate increased coverage of DIL volumes, achieving a V150 > 90% in 85 % of DILs compared with 57 % of boost plan without an additional needle. Compared with original plan, TCP models estimated improvement in DIL control by 28 % for patients with external-beam treatment and by 8 % for monotherapy patients.
Conclusion: With MR/CT registration, the proposed mp-MRI guided DIL boost in CT-based HDR brachytherapy is feasible without violating OAR constraints, and indicates significant clinical benefit in improving TCP of DIL. It may represent a strategy to personalize treatment delivery and improve tumor control.
Advances in knowledge: This study investigated the feasibility of mp-MRI guided DIL boost in HDR prostate brachytherapy with CT-based treatment planning, and estimated its clinical impact by TCP and NTCP estimation.