The extent and spatial location of white matter hyperintensities (WMH) on brain MRI may be relevant to the development of cognitive decline in older persons. Here, we introduce a new method, known as the Multi-atlas based Detection and Localization (MADL), to evaluate WMH on fluid-attenuated inversion recovery (FLAIR) data. This method simultaneously parcellates the whole brain into 143 structures and labels hyperintense areas within each WM structure. First, a multi-atlas library was established with FLAIR data of normal elderly brains; and then a multi-atlas fusion algorithm was developed by which voxels with locally abnormal intensities were detected as WMH. At the same time, brain segmentation maps were generated from the multi-atlas fusion process to determine the anatomical location of WMH. Areas identified using the MADL method agreed well with manual delineation, with an interclass correlation of 0.97 and similarity index (SI) between 0.55 and 0.72, depending on the total WMH load. Performance was compared to other state-of-the-art WMH detection methods, such as BIANCA and LST. MADL-based analyses of WMH in an older population revealed a significant association between age and WMH load in deep WM but not subcortical WM. The findings also suggested increased WMH load in selective brain regions in subjects with mild cognitive impairment compared to controls, including the inferior deep WM and occipital subcortical WM. The proposed MADL approach may facilitate location-dependent characterization of WMH in older individuals with memory impairment.
Keywords: FLAIR; Mild cognitive disorder; Multi-atlas; Segmentation; White matter hyperintensities.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.