Nail salon technicians face chronic exposure to volatile organic compounds (VOCs), which can lead to adverse health outcomes including cancer. In this study, indoor levels of formaldehyde, as well as benzene, toluene, ethylbenzene and xylene, were measured in 6 Colorado nail salons. Personal exposure VOC measurements and health questionnaires (n = 20) were also performed; questionnaires included employee demographics, health symptoms experienced, and protective equipment used. Cancer slope factors from the United States Environmental Protection Agency (US EPA) and anthropometric data from the Centers for Disease Control and Prevention were then used to estimate cancer risk for workers, assuming 20-yr exposures to concentrations of benzene and formaldehyde reported here. Results show that 70% of surveyed workers experienced at least one health issue related to their employment, with many reporting multiple related symptoms. Indoor concentrations of formaldehyde ranged from 5.32 to 20.6 μg m-3, across all 6 salons. Indoor concentrations of toluene ranged from 26.7 to 816 μg m-3, followed by benzene (3.13-51.8 μg m-3), xylenes (5.16-34.6 μg m-3), and ethylbenzene (1.65-9.52 μg m-3). Formaldehyde levels measured in one salon exceeded the Recommended Exposure Limit from the National Institute for Occupational Safety and Health. Cancer risk estimates from formaldehyde exposure exceeded the US EPA de minimis risk level (1 × 10-6) for squamous cell carcinoma, nasopharyngeal cancer, Hodgkin's lymphoma, and leukemia; leukemia risk exceeded 1 × 10-4 in one salon. The average leukemia risk from benzene exposure also exceeded the US EPA de minimis risk level for all demographic categories modeled. In general, concentrations of aromatic compounds measured here were comparable to those measured in studies of oil refinery and auto garage workers. Cancer risk models determined that 20-yr exposure to formaldehyde and benzene concentrations measured in this study will significantly increase worker's risk of developing cancer in their lifetime.
Keywords: BTEX; Cancer risk estimation; Electrochemical sensors; Personal care products; VOCs.
Copyright © 2019 Elsevier Ltd. All rights reserved.