Few studies have investigated the link between putative biomarkers of attention-deficit/hyperactivity disorder (ADHD) symptomatology and genetic risk for ADHD. To address this, we investigate the degree to which ADHD symptomatology is associated with white matter microstructure and cerebral cortical thickness in a large population-based sample of adolescents. Critically, we then test the extent to which multimodal correlates of ADHD symptomatology are related to ADHD polygenic risk score (PRS). Neuroimaging, genetic, and behavioral data were obtained from the IMAGEN study. A dimensional ADHD composite score was derived from multi-informant ratings of ADHD symptomatology. Using tract-based spatial statistics, whole brain voxel-wise regressions between fractional anisotropy (FA) and ADHD composite score were calculated. Local cortical thickness was regressed on ADHD composite score. ADHD PRS was based on a very recent genome-wide association study, and calculated using PRSice. ADHD composite score was negatively associated with FA in several white matter pathways, including bilateral superior and inferior longitudinal fasciculi (p < 0.05, corrected). ADHD composite score was negatively associated with orbitofrontal cortical thickness (p < 0.05, corrected). The ADHD composite score was correlated with ADHD PRS (p < 0.001). FA correlates of ADHD symptomatology were significantly associated with ADHD PRS, whereas cortical thickness correlates of ADHD symptomatology were unrelated to ADHD PRS. Variation in hyperactive/inattentive symptomatology was associated with white matter microstructure, which, in turn, was related to ADHD PRS. Results suggest that genetic risk for ADHD symptomatology may be tied to biological processes affecting white matter microstructure.