The bacterial disease American Foulbrood (AFB), caused by the Gram-positive bacterium Paenibacillus larvae, is considered the most contagious and destructive infectious disease affecting honeybees world-wide. The resilient nature of P. larvae bacterial spores presents a difficult problem for the control of AFB. Burning clinically symptomatic colonies is widely considered the only workable strategy to prevent further spread of the disease. Antibiotic use is banned in EU countries, and although used commonly in the U.S. and Canada, it only masks symptoms and does not prevent the further spread of the disease. Not surprisingly, there is an increased demand for chemical-free strategies to prevent and control of AFB. The aim of this study was to implement a management program with a long-term perspective to reduce infection pressure and eliminate AFB outbreaks. The study was conducted within a commercial beekeeping operation in central Sweden that has previously experienced reoccurring AFB outbreaks. For 5 years, P. larvae were cultured from adult bee samples taken in the fall. The following spring, any identified sub-clinically infected colonies were shaken onto new material and quarantined from the rest of the beekeeping operation. After the first year clinical symptoms were not again observed, and during the 5 years of the study the proportion of apiaries harbouring P. larvae spores decreased from 74% to 4%. A multinomial regression analysis also clearly demonstrated that the proportion of infected colonies with the highest levels of spore counts disproportionately declined so that by the end of the study the only remaining infected apiaries were in the lowest spore count category (the three higher spore count categories having been eradicated). These results demonstrate the importance of management practices on AFB disease epidemiology. Early detection of subclinical spore prevelance and quarantine management as presented here can provide an effective sustainable chemical-free preventive solution to reduce both the incidence of AFB outbreaks and continued transmission risk at a large-scale.
Keywords: Apis mellifera; Disease prevention; Early detection; Epidemiology; Honeybees; Paenibacillus larvae; Quarantine.
Published by Elsevier B.V.