Aims: B1- and B2-kinin receptors play a major role in several cardiovascular diseases. Therefore, we aimed to evaluate cardiac functional consequences of B1- and B2-kinin receptors ablation, focusing on the cardiac ROS and NO generation.
Main methods: Cardiac contractility, ROS, and NO generation, and protein expression were evaluated in male wild-type (WT), B1- (B1-/-) and B2-kinin (B2-/-) knockout mice.
Key findings: Impaired contractility in B1-/- and B2-/- hearts was associated with oxidative stress through upregulation of NADPH oxidase p22phox subunit. B1-/- and B2-/- hearts presented higher NO and peroxynitrite levels than WT. Despite decreased sarcoplasmic reticulum Ca2+ ATPase pump (SERCA2) expression, nitration at tyrosine residues of SERCA2 was markedly higher in B1-/- and B2-/- hearts.
Significance: B1- and B2-kinin receptors govern ROS generation, while disruption of B1- and B2-kinin receptors leads to impaired cardiac dysfunction through excessive tyrosine nitration on the SERCA2 structure.
Keywords: Cardiac; Kinin receptors; NADPH oxidase; Nitric oxide; Reactive oxygen species.
Copyright © 2019 Elsevier Inc. All rights reserved.