Pushing data quality for laboratory pair distribution function experiments

Rev Sci Instrum. 2019 Apr;90(4):043905. doi: 10.1063/1.5093714.

Abstract

Over the last decade, some studies with laboratory pair distribution function (PDF) data emerged. Yet, limited Qmax or instrumental resolution impeded in-depth structural refinements. With more advanced detector technologies, the question arose how to design novel PDF equipment for laboratories that will allow decent PDF refinements over r = 1-70 Å. It is crucial to reflect the essential requirements, namely, monochromatic X-rays, suppression of air scattering, instrumental resolution, and overall measurement times. The result is a novel PDF setup based on a STOE STADI P powder diffractometer in transmission-/Debye-Scherrer geometry with monochromatic Ag Kα1 radiation, featuring a MYTHEN2 4K detector covering a Q range of 0.3-20.5 Å-1. PDF data are collected in a moving PDF mode within 6 h. Structural signatures of liquids can be satisfactorily resolved in the PDF as shown for the ionic liquid hmimPF6. The high instrumental resolution is mirrored in low qdamp values determined from LaB6 measurements. PDF data from a powder sample of ca. 7 nm TiO2 nanoparticles were successfully refined over up to 70 Å with goodness-of-fit values Rw < 0.22 (respectively Rw = 0.18 over 30 Å), thanks to the low background and high instrumental resolution, hereby enlarging the accessible r range by several tens of Angstroms compared to previous laboratory PDF studies.