Heliostat alignment evaluation is among the main issues in solar tower concentration plant operation and maintenance. This paper describes a novel method used to evaluate heliostat misalignment and its experimental verification. This method provides a different way of visualizing beam centroid pointing errors by generating the complete deviation curve for each axis. This, for example, would be useful for verifying a heliostat's correct alignment by using a measurement performed out of the receiver target, using these traces to calculate its reflection's expected location, given a known misalignment. This measurement could be performed during operation simply by including a reflective element in the heliostat and two detector arrays on the tower's surface. This model has been tested for various types of misalignments of a heliostat at different hours, dates, and heliostat locations. The simulation results have been validated by using an experimental setup at a scale of 1:100.