Background: The search for diagnostic biomarkers has been profiting from a growing number of high quality sequenced genomes and freely available bioinformatic tools. These can be combined with wet lab experiments for a rational search. Improved, point-of-care diagnostic tests for visceral leishmaniasis (VL), early case detection and surveillance are required. Previous investigations demonstrated the potential of IgG1 as a biomarker for monitoring clinical status in rapid diagnostic tests (RDTs), although using a crude lysate antigen (CLA) as capturing antigen. Replacing the CLA by specific antigens would lead to more robust RDTs.
Methodology: Immunoblots revealed L. donovani protein bands detected by IgG1 from VL patients. Upon confident identification of these antigens by mass spectrometry (MS), we searched for evidence of constitutive protein expression and presence of antigenic domains or high accessibility to B-cells. Selected candidates had their linear epitopes mapped with in silico algorithms. Multiple high-scoring predicted epitopes from the shortlisted proteins were screened in peptide arrays. The most promising candidate was tested in RDT prototypes using VL and nonendemic healthy control (NEHC) patient sera.
Results: Over 90% of the proteins identified from the immunoblots did not satisfy the selection criteria and were excluded from the downstream epitope mapping. Screening of predicted epitope peptides from the shortlisted proteins identified the most reactive, for which the sensitivity for IgG1 was 84% (95% CI 60-97%) with Sudanese VL sera on RDT prototypes. None of the sera from NEHCs were positive.
Conclusion: We employed in silico searches to reduce drastically the output of wet lab experiments, focusing on promising candidates containing selected protein features. By predicting epitopes in silico we screened a large number of peptides using arrays, identifying the most promising one, for which IgG1 sensitivity and specificity, with limited sample size, supported this proof of concept strategy for diagnostics discovery, which can be applied to the development of more robust IgG1 RDTs for monitoring clinical status in VL.