Deviant auditory steady-state responses (aSSRs) in the gamma range (30-90 Hz) may be translational biomarkers for schizophrenia (SZ). This study tests whether aSSR deviations are (i) specific to SZ across the psychosis dimension, (ii) specific to particular frequency bands, and (iii) present in bipolar I disorder without psychosis (BDNP).
Methods: Beta (20-), low- (40-), and high-gamma (80-Hz) aSSRs were measured with EEG and compared across 113 SZ, 105 schizoaffective disorder (SAD), 99 bipolar disorder with psychosis (BDP), 68 BDNP, and 137 healthy comparison subjects (HC). Standard aSSR measures (single-trial power [STP] and inter-trial phase coherence [ITC]), as well as evoked responses to stimulus onsets/offsets and pre-stimulus power, were quantified. Multivariate canonical discriminant analysis was used to summarize variables that efficiently and maximally differentiated groups.
Results: (i) Psychosis groups showed reduced responses on ITC 20 Hz, STP/ITC 40 Hz, STP/ITC 80 Hz, indicating dimensional reductions in aSSR across the psychosis spectrum not specific to aSSR frequency. For the 40- and 80-Hz ITCs there was greater reduction in SZ compared to SAD, possibly indexing cortical disruptions linked to psychosis without mood symptoms. (ii) All probands had elevated pre-stimulus power, possibly compromising neural entrainment to the steady-state stimuli. (iii) Onset/Offset and 80 Hz ITC responses were most important for group discrimination and showed dimensional reduction across the schizo-bipolar spectrum.
Conclusions: Deviant aSSRs were found across the schizo-bipolar spectrum at multiple frequencies with psychosis status and severity linked to greatest reductions at low and high gamma.
Keywords: Auditory steady-state response; Bipolar disorder; EEG biomarkers; Gamma oscillations; Psychosis; Schizophrenia.
Copyright © 2019 Elsevier B.V. All rights reserved.