Geckos are remarkable in their ability to reversibly adhere to smooth vertical, and even inverted surfaces. However, unraveling the precise mechanisms by which geckos do this has been a long process, involving various approaches over the last two centuries. Our understanding of the principles by which gecko adhesion operates has advanced rapidly over the past 20 years and, with this knowledge, material scientists have attempted to mimic the system to create artificial adhesives. From a biological perspective, recent studies have examined the diversity in morphology, performance, and real-world use of the adhesive apparatus. However, the lack of multidisciplinarity is likely a key roadblock to gaining new insights. Our goals in this paper are to 1) present a historical review of gecko adhesion research, 2) discuss the mechanisms and morphology of the adhesive apparatus, 3) discuss the origin and performance of the system in real-world contexts, 4) discuss advancement in bio-inspired design, and 5) present grand challenges in gecko adhesion research. To continue to improve our understanding, and to more effectively employ the principles of gecko adhesion for human applications, greater intensity and scope of interdisciplinary research are necessary.
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.