Three-dimensional (3D) printing enables the production of personalized tissue-engineered products with high tunability and complexity. It is thus an attractive and promising technology in the pharmaceutical and medical fields. Printable and biocompatible hydrogels are attractive materials for 3D printing applications because they offer favorable biomimetic environments for live cells, such as high water content, porous structure, bioactive molecule incorporation, and tunable mechanical properties and degradation rates. However, most conventional hydrogel materials are brittle and mechanically weak and hence cannot meet the mechanical needs for handling and soft and elastic tissue use. Thus, the development of printable, high-strength, and elastic hydrogel materials for 3D printing in tissue repair and regeneration is critical and interesting. In this review, we summarized the recent reports on high-strength and elastic hydrogels for printing use and categorized them into three groups, namely double-network hydrogels, nanocomposite hydrogels, and single-network hydrogels. The reinforcing mechanisms of these high-strength hydrogels and the strategies to improve their printability and biocompatibility were further discussed. These high-strength and elastic hydrogels may offer opportunities to accelerate the development of 3D printing technology and provide new insights for 3D-printed product design in biomedicine. STATEMENT OF SIGNIFICANCE: Biocompatible and biodegradable hydrogels are highly attractive in 3D printing because of their desirable printability and friendly environment for loading bioactive molecules and living cells. The development of high-strength and elastic hydrogels changes the conventional impression of weak and brittle hydrogels and provides new opportunities and inspirations for 3D printing and biomedical applications. In this review, we analyzed the hydrogel reinforcement mechanisms, summarized recent progresses in developing high-strength and elastic hydrogels for 3D printing, and discussed the strategies to improve the printability and biocompatibility of the hydrogel inks.
Keywords: 3D printing; Elasticity; High strength; Hydrogel; Tissue repair.
Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.