Correlated Neural Activity and Encoding of Behavior across Brains of Socially Interacting Animals

Cell. 2019 Jul 11;178(2):429-446.e16. doi: 10.1016/j.cell.2019.05.022. Epub 2019 Jun 20.

Abstract

Social interactions involve complex decision-making tasks that are shaped by dynamic, mutual feedback between participants. An open question is whether and how emergent properties may arise across brains of socially interacting individuals to influence social decisions. By simultaneously performing microendoscopic calcium imaging in pairs of socially interacting mice, we find that animals exhibit interbrain correlations of neural activity in the prefrontal cortex that are dependent on ongoing social interaction. Activity synchrony arises from two neuronal populations that separately encode one's own behaviors and those of the social partner. Strikingly, interbrain correlations predict future social interactions as well as dominance relationships in a competitive context. Together, our study provides conclusive evidence for interbrain synchrony in rodents, uncovers how synchronization arises from activity at the single-cell level, and presents a role for interbrain neural activity coupling as a property of multi-animal systems in coordinating and sustaining social interactions between individuals.

Keywords: calcium imaging; hyperscanning; interbrain synchrony; mPFC; miniscope; mouse; neural circuit; prefrontal cortex; social behavior; social dominance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain / metabolism*
  • Calcium Signaling
  • Competitive Behavior / physiology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neurons / metabolism*
  • Prefrontal Cortex / metabolism
  • Principal Component Analysis
  • Social Dominance