Root hemiparasites acquire resources from neighboring plants' vascular systems and can limit host growth, depress community productivity, and exert keystone effects. The strength of these effects is posited to be greater where hosts are nutrient-stressed but studies of annual hemiparasites show effects to be short-lived and variable. We conducted a 10-year experiment testing whether fertilizer addition alters the impact of the clonal, perennial hemiparasite Pedicularis canadensis on a prairie community and examine whether short-term trends reflect longer-term effects on community dynamics. Hemiparasite removal in 1-m2 plots increased productivity over the first three field seasons, but later the difference between removal and non-removal plots diminished as P. canadensis disappeared from 24 of the 48 non-removal plots. Effects of hemiparasite removal were context independent relative to fertilizer and shade treatments, but fertilizer initially increased, and then subsequently suppressed P. canadensis biomass. In non-removal plots, hemiparasite biomass was negatively associated with total community dry mass, which was greater in fertilized plots. Initially, fertilizer promoted graminoids, but after seven more field seasons, non-legume forbs responded most strongly. Measures of biodiversity tended to increase with hemiparasite cover. Demographic data collected at two different times for P. canadensis show high survivorship of established plants, high seed input, with seedling survival greater in taller vegetation. Unlike annual hemiparasite populations, well-established P. canadensis buffer populations against large demographic swings. At the scale of a few square meters, this keystone species produces significant heterogeneity in a prairie, but its presence at that scale is transient over approximately one decade.
Keywords: Clonal growth; Heterogeneity; Keystone effect; Pedicularis canadensis; Perennial.