Polymerization-based signal amplification (PBA) is a material-based approach to improving the sensitivity of paper-based diagnostic tests. Eosin Y is used as an assay label to photo-initiate free-radical polymerization to produce colored hydrogels in the presence of target analytes captured by bioactive paper. PBA achieves high-contrast and time-independent signals, but its nanomolar detection limit makes it impractical for early diagnosis of many diseases. In this work, we demonstrated efficient localization of large quantities of eosin Y per captured target analyte by incorporating eosin Y-loaded liposomes into PBA. This new "materials approach" allowed 30-fold signal enhancement compared to conventional PBA. To further improve the detection limit of liposome-enhanced PBA, we used a continuous flow-through assay format with 100 μL of analyte solution, achieving sub-nanomolar detection limits with high-contrast signals that were easily discernible to the unaided eye.
Keywords: colorimetric detection; dye-encapsulating liposome; paper-based diagnostic test; photo-initiated polymerization; signal amplification.