"Ion Solvation Spectra": Free Energy Analysis of Solvation Structures of Multivalent Cations in Aprotic Solvents

J Phys Chem Lett. 2019 Sep 5;10(17):4920-4928. doi: 10.1021/acs.jpclett.9b01569. Epub 2019 Aug 14.

Abstract

Using advanced molecular dynamics free energy sampling techniques-both classical and ab initio-we analyze the solvation structures of multivalent cations in aprotic solvents. In contrast to previous studies of mono- and bivalent ions in organic solvents, mainly performed using hybrid cluster-continuum quantum chemistry calculations that rely on the assumption of uniqueness of ion solvation free energies, here we find that monatomic bivalent cations may have multiple well-defined minima, as previously reported only for water, or plateaus of free energy with respect to the ion-solvent coordination. These observations are generalized in the concept of the "ion solvation spectrum" to highlight the rich phenomenology related to ion solvation as opposed to the normally expected free energy profiles with a single coordination minimum. Specifically, we show that a single chemical species may exhibit a multiplicity of distinctly different electrochemical properties. Using one- and two-dimensional projections of the free energy landscape, we analyze the stability of ion solvation structures and reveal minimum free energy pathways for ion (de-)solvation with low-dimensional approximations to associated kinetic barriers. Unexpectedly, we show that in some cases the process of opening the first ion solvation shell, by removing a solvent molecule, may actually drive the ion into a free energy basin with a higher coordination number. Our study highlights some deficiencies of conventional methodologies for studying ion solvation as a path to determine redox potentials and provides experimentally testable predictions.