Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits

Nat Commun. 2019 Jul 24;10(1):3300. doi: 10.1038/s41467-019-10936-0.

Abstract

Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain Diseases / genetics
  • GTP-Binding Protein gamma Subunits
  • Gene Expression Profiling
  • Genetic Predisposition to Disease
  • Genetic Variation
  • Genome-Wide Association Study*
  • Humans
  • Mendelian Randomization Analysis
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Quantitative Trait Loci*
  • Transcriptome

Substances

  • BSCL2 protein, human
  • GTP-Binding Protein gamma Subunits