Background: Primary carnitine deficiency (PCD) is an autosomal recessive disorder of carnitine transportation caused by mutations in the SLC22A5 that lead to low serum carnitine levels and decreased intracellular carnitine accumulation. Characteristic clinical findings are hypoketotic hypoglycemia and skeletal and cardiac myopathy.
Objective: To genetically diagnose 24 unrelated Chinese patients with PCD, including 18 infants and six adults.
Methods: The entire coding region and the intron-exon boundaries of SLC22A5 were amplified by polymerase chain reaction (PCR). In silico analyses and reverse transcription-polymerase chain reaction (RT-PCR) were used to predict variants' impact on protein structure and function.
Results: Disease-causing variants in the SLC22A5 were identified in all 24 subjects, and c.288delG, c.495C>A, c.774_775insTCG, c.824+1G>A, and c.1418G>T were novel. The novel variant c.824+1G>A caused a truncated protein p.Phe276Tyrfs*8.
Conclusions: We identified 13 variants in the SLC22A5 in 24 PCD patients, and five of these variants are novel mutations. c.824+1G>A was confirmed to alter mRNA splicing by reverse transcription PCR. Furthermore, our findings broaden the mutation spectrum of SLC22A5 and the understanding of the diverse and variable effects of PCD variants.
Keywords: newborn screening; primary carnitine deficiency; splice site mutation; variant.
© 2019 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.