The complexity of seasonally and spatially variable environments, coupled with complex biological interactions, makes it difficult to pinpoint biological responses to specific environmental stressors, including chemical pollution. To disentangle causative factors and reveal biomarker responses, we applied biomarker-based multivariate approaches to 15 native populations of Mediterranean mussel Mytilus galloprovincialis in spring and autumn. In addition, we used a subset of these populations in transplant experiments between clean and polluted environments in nature and in lab mesocosms. The extent of biomarker responses in native populations is affected by season, and significantly lower variability across seasons was observed among mussels from clean than from polluted sites. Results of paired block designed transplant experiment demonstrated both regional and pollution effect, with mussels uniformly exhibiting higher responses on more impacted sites in each of the Adriatic regions. Biomarker status of mussels varied among Adriatic regions in dependence on the set of environmental variables, and between clean and polluted sites in dependence on measured concentrations of metals in mussels' tissue. Results of the mesocosm experiment revealed distinctive biomarker responses of two populations of different origin when exposed to common conditions. Multivariate description of biomarker activity and application of specific experiments allowed us to link environmental condition, exposure to pollution and seasonality to mussels' biomarker responses.
Keywords: Environmental factors; Metals; Multivariate analysis; Mytilus galloprovincialis; Transplant experiment.
Copyright © 2019 Elsevier B.V. All rights reserved.