Collagen crosslinking and cartilage glycosaminoglycan composition in normal and scoliotic chickens

Biochim Biophys Acta. 1988 Nov 17;967(2):275-83. doi: 10.1016/0304-4165(88)90020-7.

Abstract

The amounts of lysine-derived crosslinks in collagens from tendon, cartilage, intervertebral disc, and bone and changes in the composition of sternal cartilage glycosaminoglycans were estimated in two lines of chickens, a control-isogenic line and a line that develops scoliosis. In the scoliotic line, scoliosis first appears at 3-4 weeks and progressively increases in severity and incidence so that 90% of the birds express the lesion by week 10. We have reported previously that cartilage, tendon, and bone collagens from scoliotic birds are more soluble than corresponding collagens from normal birds. Herein, collagen crosslinking and altered proteoglycan metabolism are examined as possible mechanisms for the differences in collagen solubility. At 1 week of age there were fewer reducible crosslinking amino acids (hydroxylysinonorleucine, dihydroxylysinonorleucine, and lysinonorleucine) in collagens from sternal cartilage and tendon in the scoliotic line than in the isogenic line. However, by week 3 and at weeks 5 or 7 values were similar in both groups. The amounts of hydroxypyridinium in vertebral bone and intervertebral disc collagen were also similar in both groups of birds. Consequently, differences in collagen crosslinking do not appear to be a persistent developmental defect underlying the expression of scoliosis in the model. However, differences were observed in cartilage proteoglycans and glycosaminoglycans from the scoliotic line that were not present in cartilage from the isogenic line. The average molecular weight of the uronide-containing glycosaminoglycans was 30% less in the scoliotic line than in the isogenic line, i.e., 12,000 compared to 18,000. The size distribution of cartilage proteoglycans from the scoliotic line also differed from that of proteoglycans from the isogenic line.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cartilage / analysis*
  • Chickens
  • Collagen / metabolism*
  • Glycosaminoglycans / analysis*
  • Lysine / analysis
  • Molecular Weight
  • Scoliosis / metabolism*
  • Tendons / analysis

Substances

  • Glycosaminoglycans
  • Collagen
  • Lysine