Purpose: Buprenorphine and methadone are international gold standards for managing opioid use disorders. Although they are efficacious in treating opioid dependence, buprenorphine and methadone present risks, especially during pregnancy, causing neonatal abstinence syndrome and adverse obstetrical outcomes. Buprenorphine and methadone are also abused during pregnancy, and identifying their use is important to limit unprescribed prenatal exposure. Previous studies have suggested that concentrations of buprenorphine, but not methadone markers in unconventional matrices may predict child outcomes, although currently only limited data exist. We reviewed the literature on concentrations of buprenorphine, methadone, and their metabolites in unconventional matrices to improve data interpretation.
Methods: A literature search was conducted using scientific databases (PubMed, Scopus, Web of Science, and reports from international institutions) to review published articles on buprenorphine and methadone monitoring during pregnancy.
Results: Buprenorphine and methadone and their metabolites were quantified in the meconium, umbilical cord, placenta, and maternal and neonatal hair. Methadone concentrations in the meconium and hair were typically higher than those in other matrices, although the concentrations in the placenta and umbilical cord were more suitable for predicting neonatal outcomes. Buprenorphine concentrations were lower and required sensitive instrumentation, as measuring buprenorphine glucuronidated metabolites is critical to predict neonatal outcomes.
Conclusions: Unconventional matrices are good alternatives to conventional ones for monitoring drug exposure during pregnancy. However, data are currently scarce on buprenorphine and methadone during pregnancy to accurately interpret their concentrations. Clinical studies should be conducted with larger cohorts, considering confounding factors such as illicit drug co-exposure.