Nowadays, histopathological criteria for melanocytic lesions are the mainstay prognostic factors for melanoma. However, there are cases in which these parameters fall short to predict melanoma spread. We recently demonstrated a correlation of cofilin-1 levels, a key protein for tumor invasion, with different histopathological parameters associated with melanoma malignancy as well as a negative correlation with survival. In order to broaden our previous findings, we aim to estimate the probability of a melanoma to metastasize as a function of both a conventional histopathological parameter (Breslow thickness, BT) and cofilin-1's immunohistochemical expression levels, which we propose as a potential marker for metastasis. We used a Bayesian approach to analyze clinical and cofilin-1 datasets formerly obtained from a patients' small cohort diagnosed with malignant melanocytic lesions since 2000 until 2008; classified at different tumor stages with or without detected metastasis and with at least 5 years of clinical follow-up. Low BT values exhibited wide variance to predict metastasis occurrence, while the differential diagnostic value of cofilin-1 confirmed BT diagnosis or resulted more precise to predict outcome. Particularly, the probability of metastasis estimation improved when cofilin-1 was combined with BT for specific cases, where BT displayed large uncertainties. Our analysis and the cofilin-1 determination provided statistically significant prognostic value in mid-low BT melanomas, which could complement further evaluation criteria to assist diagnosis and treatment decision-making. Moreover, the combined use of cofilin-1 with BT, if validated in follow-up studies, would be feasible to help patients' selection for treatment and optimize health resources.
Keywords: Bayesian analysis; Breslow thickness; Cofilin-1; Melanoma; Metastasis.
Copyright © 2019 Elsevier GmbH. All rights reserved.