Dendritic cells (DCs) are specialized cells of the innate immune system that are characterized by their ability to take up, process and present antigens (Ag) to effector T cells. They are derived from DC precursors produced in the bone marrow. Different DC subsets have been described according to lineage-specific transcription factors required for their development and function. Functionally, DCs are responsible for inducing Ag-specific immune responses that mediate organ transplant rejection. Consequently, to prevent anti-donor immune responses, therapeutic strategies have been directed toward the inhibition of DC activation. In addition however, an extensive body of preclinical research, using transplant models in rodents and nonhuman primates, has established a central role of DCs in the negative regulation of alloimmune responses. As a result, DCs have been employed as cell-based immunotherapy in early phase I/II clinical trials in organ transplantation. Together with in vivo targeting through use of myeloid cell-specific nanobiologics, DC manipulation represents a promising approach for the induction of transplantation tolerance. In this review, we summarize fundamental characteristics of DCs and their roles in promotion of central and peripheral tolerance. We also discuss their clinical application to promote improved long-term outcomes in organ transplantation.
Keywords: dendritic cells; immune tolerance; organ transplantation.
© 2019 Steunstichting ESOT.