We report on a parylene chemical vapor deposition system custom designed for producing ultrathin parylene films (5-100 nm thickness) for use as an electrical insulator in nanoscale electronic devices, including as the gate insulator in transistors. The system features a small deposition chamber that can be isolated and purged for process termination, a quartz crystal microbalance for monitoring deposition, and a rotating angled stage to increase coating conformity. The system was mostly built from off-the-shelf vacuum fittings allowing for easy modification and reduced cost compared to commercial parylene coating systems. The production of ultrathin parylene films for device applications is a niche not well catered to by commercial coating systems, which are typically designed to give thicker coatings (microns) with high uniformity over much larger areas. An added advantage of our design for nanoscale device applications is that the small deposition chamber is readily removable for transfer to a glovebox to enable parylene deposition onto pristine surfaces prepared in oxygen/water-free environments with minimal contamination.