Learning to detect lymphocytes in immunohistochemistry with deep learning

Med Image Anal. 2019 Dec:58:101547. doi: 10.1016/j.media.2019.101547. Epub 2019 Aug 21.

Abstract

The immune system is of critical importance in the development of cancer. The evasion of destruction by the immune system is one of the emerging hallmarks of cancer. We have built a dataset of 171,166 manually annotated CD3+ and CD8+ cells, which we used to train deep learning algorithms for automatic detection of lymphocytes in histopathology images to better quantify immune response. Moreover, we investigate the effectiveness of four deep learning based methods when different subcompartments of the whole-slide image are considered: normal tissue areas, areas with immune cell clusters, and areas containing artifacts. We have compared the proposed methods in breast, colon and prostate cancer tissue slides collected from nine different medical centers. Finally, we report the results of an observer study on lymphocyte quantification, which involved four pathologists from different medical centers, and compare their performance with the automatic detection. The results give insights on the applicability of the proposed methods for clinical use. U-Net obtained the highest performance with an F1-score of 0.78 and the highest agreement with manual evaluation (κ=0.72), whereas the average pathologists agreement with reference standard was κ=0.64. The test set and the automatic evaluation procedure are publicly available at lyon19.grand-challenge.org.

Keywords: Computational pathology; Deep learning; Immune cell detection; Immunohistochemistry.

Publication types

  • Multicenter Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artifacts
  • Breast Neoplasms / immunology
  • Colonic Neoplasms / immunology
  • Datasets as Topic
  • Deep Learning*
  • Female
  • Humans
  • Immunohistochemistry / methods*
  • Lymphocytes / immunology*
  • Male
  • Netherlands
  • Prostatic Neoplasms / immunology