Evaluation of the neuromuscular junction in a middle-aged mouse model of congenital myasthenic syndrome

Muscle Nerve. 2019 Dec;60(6):790-800. doi: 10.1002/mus.26710. Epub 2019 Oct 23.

Abstract

Introduction: Reduced expression of the vesicular acetylcholine transporter (VAChT) leads to changes in the distribution and shape of synaptic vesicles (SVs) at neuromuscular junctions (NMJs), suggesting vesicular acetylcholine (ACh) as a key component of synaptic structure and function. It is poorly understood how long-term changes in cholinergic transmission contribute to age- and disease-related degeneration in the motor system.

Methods: In this study we performed confocal imaging, electrophysiology, electron microscopy, and analyses of respiratory mechanics of the diaphragm NMJ components in 12-month-old wild-type (WT) and VAChTKDHOM mice.

Results: Diaphragms of NMJs of the VAChTKDHOM mice were similar to those in WT mice in number, colocalization, and fragmentation of pre-/postsynaptic components. However, they had increased spontaneous SV exocytosis, miniature endplate potential frequency, and diminished MEPP amplitude. No impairment in respiratory mechanics at rest was observed, probably due to the large neurotransmission safety factor of the diaphragm.

Discussion: The present findings help us to understand the consequences of reduced ACh release at the NMJs during aging.

Keywords: VAChT; aging; congenital myasthenia; diaphragm; neuromuscular junction; respiratory mechanics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholine / metabolism
  • Aging / metabolism
  • Aging / pathology*
  • Animals
  • Diaphragm / metabolism
  • Diaphragm / physiopathology
  • Diaphragm / ultrastructure*
  • Disease Models, Animal
  • Endocytosis
  • Excitatory Postsynaptic Potentials / physiology
  • Exocytosis
  • Gene Knockdown Techniques
  • Mice
  • Microscopy, Confocal
  • Microscopy, Electron, Transmission
  • Motor Endplate
  • Myasthenic Syndromes, Congenital / genetics
  • Myasthenic Syndromes, Congenital / metabolism
  • Myasthenic Syndromes, Congenital / pathology*
  • Myasthenic Syndromes, Congenital / physiopathology
  • Neuromuscular Junction / metabolism
  • Neuromuscular Junction / physiopathology
  • Neuromuscular Junction / ultrastructure*
  • Respiratory Mechanics / physiology
  • Synaptic Transmission
  • Synaptic Vesicles / metabolism
  • Synaptic Vesicles / ultrastructure*
  • Vesicular Acetylcholine Transport Proteins / genetics

Substances

  • Slc18a3 protein, mouse
  • Vesicular Acetylcholine Transport Proteins
  • Acetylcholine