Water is the major natural resource that enables life on our planet. Rapid detection of water pollution that occurs due to both human activity and natural cataclysms is imperative for environmental protection. Analytical chemistry-based techniques are generally not suitable for rapid monitoring because they involve collection of water samples and analysis in a laboratory. Laser-based approaches such as laser-induced breakdown spectroscopy (LIBS) may offer a powerful alternative, yet conventional LIBS relies on the use of tightly focused laser beams, requiring a stable air-water interface in a controlled environment. Reported here is a proof-of-principle, quantitative, simultaneous measurement of several representative heavy-metal contaminants in water, at ppm-level concentrations, using ultraintense femtosecond laser pulses propagating in air in the filamentation regime. This approach is straightforwardly extendable to kilometer-scale standoff distances, under adverse atmospheric conditions and is insensitive to the movements of the water surface due to the topography and water waves.
Keywords: femtosecond laser pulse; filamentation; heavy‐metal pollution; remote sensing.
© 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.