African wolves (AWs) are sympatric with endangered Ethiopian wolves (EWs) in parts of their range. Scat analyses have suggested a dietary overlap between AWs and EWs, raising the potential for exploitative competition, and a possible conservation threat to EWs. However, in contrast to that of the well-studied EW, the foraging ecology of AWs remains poorly characterized. Accordingly, we studied the foraging ecology of radio-collared AWs (n = 11 individuals) at two localities with varying levels of anthropogenic disturbance in the Ethiopian Highlands, the Guassa-Menz Community Conservation Area (GMCCA) and Borena-Saynt National Park (BSNP), accumulating 845 h of focal observation across 2952 feeding events. We also monitored rodent abundance and rodent trapping activity by local farmers who experience conflict with AWs. The AW diet consisted largely of rodents (22.0%), insects (24.8%), and goats and sheep (24.3%). Of the total rodents captured by farmers using local traps during peak barley production (July to November) in GMCCA, averaging 24.7 ± 8.5 rodents/hectare/day, 81% (N = 3009) were scavenged by AWs. Further, of all the rodents consumed by AWs, most (74%) were carcasses. These results reveal complex interactions between AWs and local farmers, and highlight the scavenging niche occupied by AWs in anthropogenically altered landscapes in contrast to the active hunting exhibited by EWs in more intact habitats. While AWs cause economic damage to local farmers through livestock predation, they appear to play an important role in scavenging pest rodents among farmlands, a pattern of behaviour which likely mitigates direct and indirect competition with EWs. We suggest two routes to promote the coexistence of AWs and EWs in the Ethiopian highlands: local education efforts highlighting the complex role AWs play in highland ecosystems to reduce their persecution, and enforced protection of intact habitats to preserve habitat preferred by EWs.
Keywords: African wolf; Ethiopian highlands; Ethiopian wolf; ecosystem services; feeding ecology; pest rodents.
© 2019 The Authors.