Background: The epigenetic machinery is frequently altered in acute myeloid leukemia. Focusing on cytogenetically normal (CN) AML, we previously described an abnormal H3K27me3 enrichment covering 70 kb on the HIST1 cluster (6.p22) in CN-AML patient blasts. Here, we further investigate the molecular, functional, and prognosis significance of this epigenetic alteration named H3K27me3 HIST1 in NPM1-mutated (NPM1mut) CN-AML.
Results: We found that three quarter of the NPM1mut CN-AML patients were H3K27me3 HIST1high. H3K27me3 HIST1high group of patients was associated with a favorable outcome independently of known molecular risk factors. In gene expression profiling, the H3K27me3 HIST1high mark was associated with lower expression of the histone genes HIST1H1D, HIST1H2BG, HIST1H2AE, and HIST1H3F and an upregulation of genes involved in myelomonocytic differentiation. Mass spectrometry analyses confirmed that the linker histone protein H1d, but not the other histone H1 subtypes, was downregulated in the H3K27me3 HIST1high group of patients. H1d knockdown primed ATRA-mediated differentiation of OCI-AML3 and U937 AML cell lines, as assessed on CD11b/CD11c markers, morphological and gene expression analyses.
Conclusions: Our data suggest that NPM1mut AML prognosis depends on the epigenetic silencing of the HIST1 cluster and that, among the H3K27me3 silenced histone genes, HIST1H1D plays a role in AML blast differentiation.
Keywords: Acute myeloid leukemia; Epigenetics; H3K27me3; HIST1; NPM1.