Streptococcus suis is an important zoonotic pathogen. Serotype 2 and sequence type (ST) 1 are the most frequently reported strains in both infected humans and pigs. ST7 is only endemic to China, and it was responsible for outbreaks in 1998 and 2005 in China. In the present study, 38 sporadic ST7 S. suis strains, which mostly caused sepsis, were collected from patients in the Guangxi Zhuang Autonomous Region (GX) between 2007 and 2018. Of 38 sporadic ST7 strains, serotype 14 was the most frequent (27 strains, 71.1%), followed by serotype 2 (11 strains, 28.9%). The phylogenetic structure of the ST7 population, including epidemic and sporadic ST7 strains, was constructed using mutational single-nucleotide polymorphisms (SNPs). High diversity within the ST7 population was revealed and divided into five lineages. Only one sporadic ST7 strain, GX14, from a Streptococcal toxic-shock-like syndrome (STSLS) patient was clustered into the same lineage as the epidemic strains. GX14 and the epidemic strains diverged in 1974. The sporadic ST7 strains of GX were mainly clustered into lineage 5, which emerged in 1980. Comparing to genome of epidemic strain, the major differences in genome of sporadic ST7 strains of GX was the absence of 89 kb pathogenicity island (PAI) specific to epidemic strain and insertion of 128 kb ICE_phage tandem MGE or ICE portion of the MGE. These mobile elements play a significant role in the horizontal transfer of antibiotic resistance genes in sporadic ST7 strains. Our results enhanced the understanding of the evolution of the ST7 strains and their ability to cause life-threatening infections in humans.
Keywords: Streptococcus suis; comparative genomes; phylogenetic structure; sequence type 7; serotype 14; sporadic strain.