Biochanin A is a dietary isoflavone with multiple biological functions. Owing to a lack of comprehensive studies of biochanin A metabolism, this study was designed to further clarify the processes involved in biochanin A metabolism. In this study, ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was utilized to characterize the metabolism of biochanin A in vivo and in vitro. As a result, 43 metabolites in rats, 22 metabolites in liver microsomes, and 18 metabolites in intestinal flora were elucidated, and 5 metabolites were identified by comparison with standards. Oxidation, demethylation, hydrogenation, internal hydrolysis, conjugation (e.g., glucuronidation, sulfonation, glucose conjugation, methylation, and acetylation), and their composite reactions were determined to be major processes involved in biochanin A biotransformation. The results contribute to a better understanding of the pharmacological mechanism of biochanin A and provide a basis for comprehension of the safety and toxicity of biochanin A.
Keywords: UHPLC-Q-TOF-MS/MS; biochanin A; in vivo and in vitro; metabolism.