Background: Vancomycin-resistant enterococci (VRE) are a serious antimicrobial resistant threat in the healthcare setting. We assessed the cost-effectiveness of VRE screening and isolation for patients at high-risk for colonisation on a general medicine ward compared to no VRE screening and isolation from the healthcare payer perspective.
Methods: We developed a microsimulation model using local data and VRE literature, to simulate a 20-bed general medicine ward at a tertiary-care hospital with up to 1000 admissions, approximating 1 year. Primary outcomes were accrued over the patient's lifetime, discounted at 1.5%, and included expected health outcomes (VRE colonisations, VRE infections, VRE-related bacteremia, and deaths subsequent to VRE infection), quality-adjusted life years (QALYs), healthcare costs, and incremental cost-effectiveness ratio (ICER). Probabilistic sensitivity analysis (PSA) and scenario analyses were conducted to assess parameter uncertainty.
Results: In our base-case analysis, VRE screening and isolation prevented six healthcare-associated VRE colonisations per 1000 admissions (6/1000), 0.6/1000 VRE-related infections, 0.2/1000 VRE-related bacteremia, and 0.1/1000 deaths subsequent to VRE infection. VRE screening and isolation accrued 0.0142 incremental QALYs at an incremental cost of $112, affording an ICER of $7850 per QALY. VRE screening and isolation practice was more likely to be cost-effective (> 50%) at a cost-effectiveness threshold of $50,000/QALY. Stochasticity (randomness) had a significant impact on the cost-effectiveness.
Conclusion: VRE screening and isolation can be cost-effective in majority of model simulations at commonly used cost-effectiveness thresholds, and is likely economically attractive in general medicine settings. Our findings strengthen the understanding of VRE prevention strategies and are of importance to hospital program planners and infection prevention and control.
Keywords: Antimicrobial resistance; Cost-effectiveness analysis; Health economics; Hospital-acquired infection; Infection control; VRE; Vancomycin-resistant enterococci.
© The Author(s). 2019.