Raw milk contains wide microbial diversity, composed mainly of lactic acid bacteria (LAB), which are used as probiotics in both human and animal husbandry. We isolated, characterized, and evaluated LAB from indigenous Bangladeshi raw milk to assess probiotic potential, including antagonistic activity (against Escherichia coli O157: H7, Enterococcus faecalis, Salmonella Typhimurium, Salmonella Enteritidis, and Listeria monocytogenes), survivability in simulated gastric juice, tolerance to phenol and bile salts, adhesion to ileum epithelial cells, auto- and co-aggregation, hydrophobicity, α-glucosidase inhibitory activity, and antibiotic susceptibility tests. The 4 most promising LAB strains showed probiotic potential and were identified as Lactobacillus casei, Lactobacillus plantarum (which produced plantaricin EF), Lactobacillus fermentum, and Lactobacillus paracasei. These strains inhibited all pathogens tested at various degrees, and competitively excluded pathogens with viable counts of 3.0 to 6.0 log cfu/mL. Bacteriocin, organic acids, and low-molecular-weight substances were mainly responsible for antimicrobial activity by the LAB strains. All 4 LAB strains were resistant to oxacillin and 3 were resistant to vancomycin and streptomycin, with multiple antibiotic resistance indices >0.2. After further in vivo evaluation, these LAB strains could be considered probiotic candidates with application in the food industry.
Keywords: Lactobacillus; plantaricin; probiotic properties; raw milk; safety issues.
Copyright © 2020 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.