Objective: This project aimed to develop and propose a standardised reporting guideline for kidney disease research and clinical data reporting, in order to improve kidney disease data quality and integrity, and combat challenges associated with the management and challenges of 'Big Data'.
Methods: A list of recommendations was proposed for the reporting guideline based on the systematic review and consolidation of previously published data collection and reporting standards, including PhenX measures and Minimal Information about a Proteomics Experiment (MIAPE). Thereafter, these recommendations were reviewed by domain-specialists using an online survey, developed in Research Electronic Data Capture (REDCap). Following interpretation and consolidation of the survey results, the recommendations were mapped to existing ontologies using Zooma, Ontology Lookup Service and the Bioportal search engine. Additionally, an associated eXtensible Markup Language schema was created for the REDCap implementation to increase user friendliness and adoption.
Results: The online survey was completed by 53 respondents; the majority of respondents were dual clinician-researchers (57%), based in Australia (35%), Africa (33%) and North America (22%). Data elements within the reporting standard were identified as participant-level, study-level and experiment-level information, further subdivided into essential or optional information.
Conclusion: The reporting guideline is readily employable for kidney disease research projects, and also adaptable for clinical utility. The adoption of the reporting guideline in kidney disease research can increase data quality and the value for long-term preservation, ensuring researchers gain the maximum benefit from their collected and generated data.
Keywords: FAIR; H3ABioNet; data reporting; data standardisation; kidney disease; reporting guideline.
© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.