Exposure to polycyclic aromatic hydrocarbons and phthalates are linked to lung function decline and altered relative telomere length (RTL) accompanying with oxidative stress and inflammatory events in human body. However, limited data are available about impacts of co-exposure of PAHs and phthalates on lung function and RTL. We conducted a pilot study with repeated measures during the winter of 2014 and summer of 2015 in Wuhan city, China. Participants took part in the measures of lung function, RTL, urinary monohydroxylated-PAHs (OH-PAHs) and phthalate metabolites over three consecutive days in each season. Linear mixed-effect (LME) models and Bayesian kernel machine regression (BKMR) were used to analyze the relations of OH-PAHs or phthalate metabolites with lung function or RTL. LME models showed the negative associations of 3-day average of hydroxyphenanthrene (2 + 3-, 4-OHPhe) or 1-hydroxypyrene with FEV1, 3-day average of 2 + 3-OHPhe with FVC. BKMR models revealed the negative relation of eight OH-PAHs with FEV1, FVC or RTL; nine phthalate metabolites may counteract an overall effect of eight OH-PAHs on FEV1, FVC or RTL. The findings indicated that urinary phthalate metabolites may counteract the negative association of urinary OH-PAHs on FEV1 or FVC, which may be partially linked to shorter RTL regarding biological aging.
Keywords: Bayesian kernel machine regression; Lung function; Phthalates; Polycyclic aromatic hydrocarbons; Relative telomere length.
Copyright © 2019 Elsevier B.V. All rights reserved.