Broad response organic photodetectors (OPDs) with a photomultiplication (PM) effect are achieved with one absorber layer and one multiplication layer. The response range of the PM-OPDs is primarily determined by materials in the absorber layer, and the external quantum efficiency (EQE) of the PM-OPDs is mainly controlled by the multiplication layer. Here, double-layered PM-OPDs were designed with an ITO/ZnO/PM6:Y6/PC71BM:P3HT (100:5, w/w)/Au structure, where PM6:Y6 is employed as an absorber layer and PC71BM:P3HT is used as a multiplication layer. The optimal PM-OPDs exhibit a broad response covering 350-950 nm. Meanwhile, the optimal PM-OPDs exhibit the largest EQE value of ∼1200% and a maximum specific detectivity (D*) of ∼6.8 × 10-12 cm Hz1/2 W-1 under a 10 V bias. This double-layered approach may be a smart strategy for realizing PM-OPDs with an easily adjustable response range.