Prospective assessment of NGS-detectable mutations in CML patients with nonoptimal response: the NEXT-in-CML study

Blood. 2020 Feb 20;135(8):534-541. doi: 10.1182/blood.2019002969.

Abstract

In chronic myeloid leukemia (CML) patients, tyrosine kinase inhibitors (TKIs) may select for drug-resistant BCR-ABL1 kinase domain (KD) mutants. Although Sanger sequencing (SS) is considered the gold standard for BCR-ABL1 KD mutation screening, next-generation sequencing (NGS) has recently been assessed in retrospective studies. We conducted a prospective, multicenter study (NEXT-in-CML) to assess the frequency and clinical relevance of low-level mutations and the feasibility, cost, and turnaround times of NGS-based BCR-ABL1 mutation screening in a routine setting. A series of 236 consecutive CML patients with failure (n = 124) or warning (n = 112) response to TKI therapy were analyzed in parallel by SS and NGS in 1 of 4 reference laboratories. Fifty-one patients (22 failure, 29 warning) who were negative for mutations by SS had low-level mutations detectable by NGS. Moreover, 29 (27 failure, 2 warning) of 60 patients who were positive for mutations by SS showed additional low-level mutations. Thus, mutations undetectable by SS were identified in 80 out of 236 patients (34%), of whom 42 (18% of the total) had low-level mutations somehow relevant for clinical decision making. Prospective monitoring of mutation kinetics demonstrated that TKI-resistant low-level mutations are invariably selected if the patients are not switched to another TKI or if they are switched to a inappropriate TKI or TKI dose. The NEXT-in-CML study provides for the first time robust demonstration of the clinical relevance of low-level mutations, supporting the incorporation of NGS-based BCR-ABL1 KD mutation screening results in the clinical decision algorithms.

Publication types

  • Multicenter Study

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Drug Resistance, Neoplasm
  • Female
  • Fusion Proteins, bcr-abl / genetics*
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / drug therapy*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics*
  • Male
  • Middle Aged
  • Mutation
  • Mutation Rate
  • Prospective Studies
  • Protein Kinase Inhibitors / therapeutic use*

Substances

  • BCR-ABL1 fusion protein, human
  • Protein Kinase Inhibitors
  • Fusion Proteins, bcr-abl