Plasma N-Glycans as Emerging Biomarkers of Cardiometabolic Risk: A Prospective Investigation in the EPIC-Potsdam Cohort Study

Diabetes Care. 2020 Mar;43(3):661-668. doi: 10.2337/dc19-1507. Epub 2020 Jan 8.

Abstract

Objective: Plasma protein N-glycan profiling integrates information on enzymatic protein glycosylation, which is a highly controlled ubiquitous posttranslational modification. Here we investigate the ability of the plasma N-glycome to predict incidence of type 2 diabetes and cardiovascular diseases (CVDs; i.e., myocardial infarction and stroke).

Research design and methods: Based on the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort (n = 27,548), we constructed case-cohorts including a random subsample of 2,500 participants and all physician-verified incident cases of type 2 diabetes (n = 820; median follow-up time 6.5 years) and CVD (n = 508; median follow-up time 8.2 years). Information on the relative abundance of 39 N-glycan groups in baseline plasma samples was generated by chromatographic profiling. We selected predictive N-glycans for type 2 diabetes and CVD separately, based on cross-validated machine learning, nonlinear model building, and construction of weighted prediction scores. This workflow for CVD was applied separately in men and women.

Results: The N-glycan-based type 2 diabetes score was strongly predictive for diabetes risk in an internal validation cohort (weighted C-index 0.83, 95% CI 0.78-0.88), and this finding was externally validated in the Finland Cardiovascular Risk Study (FINRISK) cohort. N-glycans were moderately predictive for CVD incidence (weighted C-indices 0.66, 95% CI 0.60-0.72, for men; 0.64, 95% CI 0.55-0.73, for women). Information on the selected N-glycans improved the accuracy of established and clinically applied risk prediction scores for type 2 diabetes and CVD.

Conclusions: Selected N-glycans improve type 2 diabetes and CVD prediction beyond established risk markers. Plasma protein N-glycan profiling may thus be useful for risk stratification in the context of precisely targeted primary prevention of cardiometabolic diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Biomarkers / blood*
  • Cardiovascular Diseases / blood
  • Cardiovascular Diseases / diagnosis
  • Cardiovascular Diseases / epidemiology
  • Cardiovascular Diseases / etiology*
  • Cohort Studies
  • Diabetes Mellitus, Type 2 / blood
  • Diabetes Mellitus, Type 2 / diagnosis
  • Diabetes Mellitus, Type 2 / epidemiology
  • Diabetes Mellitus, Type 2 / etiology*
  • Female
  • Finland / epidemiology
  • Glycosylation
  • Humans
  • Incidence
  • Male
  • Middle Aged
  • Myocardial Infarction / blood
  • Myocardial Infarction / epidemiology
  • Myocardial Infarction / etiology
  • Polysaccharides / blood*
  • Prognosis
  • Prospective Studies
  • Risk Factors
  • Stroke / blood
  • Stroke / epidemiology
  • Stroke / etiology

Substances

  • Biomarkers
  • Polysaccharides