Inherited disorders of platelet function (IPFD) and/or number (IPND) are heterogeneous conditions that result in variable mucocutaneous bleeding symptoms as a result of deranged primary haemostasis caused by platelet dysfunction or thrombocytopenia. Diagnosis is important to guide post-operative bleeding prophylactic strategies, to avoid treatment with inappropriate medications, and inform prognosis. Achieving an accurate diagnosis has traditionally been hampered by the requirement of multiple, often complex, laboratory tests that are not always available at single centres. To improve the diagnosis of these disorders a research collaborative was established, the Sydney Platelet Group, that explored an integrated approach combining traditional and contemporary platelet phenotypic and genetic diagnostic platforms available at four Sydney tertiary hospitals. Herein we report the outcomes of the first 50 patients evaluated using this approach. The cohort included 22 individuals with suspected IPFD and 28 with thrombocytopenia. Bleeding scores were higher in individuals with IPFD (mean 5.75; SD 4.83) than those with IPNDs (mean 2.14; SD 2.45). In cases with suspected IPFD, diagnosis to the level of the defective pathway was achieved in 71% and four individuals were found not to have a definitive platelet function defect. Dense granule secretion disorders were the most common platelet pathway abnormality detected (n=5). Mean bleeding scores in these individuals were not significantly different to individuals with defects in other commonly detected platelet pathways (dense granules, signal transduction and 'undetermined'). A molecular diagnosis was achieved in 52% of individuals with IPNDs and 5% with IPFD. Likely pathogenic and pathogenic variants detected included variants associated with extra-haematological complications (DIAPH1, MYH9) and potential for malignancy (ANKRD26 and RUNX1). The level of platelet investigation undertaken by this initiative is currently not available elsewhere in Australia and initial results confirm the utility of this integrated phenotypic-genetic approach.
Keywords: Platelet dysfunction; diagnosis; next generation sequencing; thrombocytopenia.
Copyright © 2019. Published by Elsevier B.V.