Purpose: Cancer immunotherapy has shown huge potential in the fight against cancer, but only a small proportion of patients respond successfully to treatment. Non-invasive methods to stratify responders from non-responders are critically important as immune therapies are often associated with immune-related side effects. Currently, conventional clinical imaging modalities do not provide a useful measure of immune therapy efficacy. Sensitive imaging biomarkers that provide information about the tumoural microenvironment may provide useful insights allowing for improved patient management.
Procedures: We have assessed the ability of a number of radiopharmaceuticals to non-invasively measure different aspects of the tumour microenvironment and correlated tumour uptake to immune therapy response in a syngeneic model of colon cancer, CT26-WT. Four radiopharmaceuticals, [18F]FDG (a glucose analogue), [18F]FEPPA (a marker for macrophage activation), [18F]FB-IL2 (a marker for CD25+ cells) and [68Ga] Ga-mNOTA-GZP (a marker for granzyme B, the serine protease downstream effector of cytotoxic T cells), were assessed as potential biomarkers to help stratify response to PD-1 monotherapy or combined anti-PD1 and CLTA4 therapy in vivo correlating tumour uptake with changes in tumour-associated immune cell populations.
Results: [18F]FDG, [18F]FEPPA and [18F]FB-IL2 (a marker for CD25+ cells) showed limited ability to determine therapy response and showed little correlation to tumour-associated immune cell changes. However, [68Ga] Ga-mNOTA-GZP showed good predictive ability and correlated well with changes in tumour-associated T cells, especially CD8+ T cells.
Conclusions: [68Ga]Ga-mNOTA-GZP uptake correlates well with changes in CD8+ T cell populations supporting continued development of granzyme B-based imaging agents for stratification of response to immunotherapy. Early assessment of immunotherapy efficacy with [68Ga]Ga-mNOTA-GZP may allow for the reduction of unnecessary side effects while significantly improving patient management.
Keywords: Imaging; Immune checkpoints; Immunotherapy; Positron emission tomography (PET).