Shape-morphing living composites

Sci Adv. 2020 Jan 17;6(3):eaax8582. doi: 10.1126/sciadv.aax8582. eCollection 2020 Jan.

Abstract

This work establishes a means to exploit genetic networks to create living synthetic composites that change shape in response to specific biochemical or physical stimuli. Baker's yeast embedded in a hydrogel forms a responsive material where cellular proliferation leads to a controllable increase in the composite volume of up to 400%. Genetic manipulation of the yeast enables composites where volume change on exposure to l-histidine is 14× higher than volume change when exposed to d-histidine or other amino acids. By encoding an optogenetic switch into the yeast, spatiotemporally controlled shape change is induced with pulses of dim blue light (2.7 mW/cm2). These living, shape-changing materials may enable sensors or medical devices that respond to highly specific cues found within a biological milieu.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acrylic Resins / pharmacology
  • Cell Proliferation / drug effects
  • Gene Regulatory Networks* / drug effects
  • Genetic Engineering
  • Optogenetics
  • Saccharomyces cerevisiae / cytology
  • Saccharomyces cerevisiae / drug effects
  • Saccharomyces cerevisiae / genetics*

Substances

  • Acrylic Resins
  • polyacrylamide