Microglia are resident immune cells in the central nervous system (CNS) that are capable of carrying out prominent and various functions during development and adulthood under both homeostatic and disease conditions. Although microglia are traditionally thought to be heterogeneous populations, which potentially allows them to achieve a wide range of responses to environmental changes for the maintenance of CNS homeostasis, a lack of unbiased and high-throughput methods to assess microglia heterogeneity has prevented the study of spatially and temporally distributed microglia subsets. The recent emergence of novel single-cell techniques, such as cytometry by time-of-flight mass spectrometry (CyTOF) and single-cell RNA sequencing, enabled scientists to overcome such limitations and reveal the surprising context-dependent heterogeneity of microglia. In this review, we summarize the current knowledge about the spatial, temporal, and functional diversity of microglia during development, homeostasis, and disease in mice and humans.
Keywords: CNS; CyTOF; heterogeneity; human; macrophages; microglia; mouse; single-cell RNA sequencing.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.