The amylin receptor (AMY) and calcitonin receptor (CTR) agonists induce acute suppression of food intake in rodents by binding to receptors in the area postrema (AP) and potentially by targeting arcuate (ARC) neurons directly. Salmon calcitonin (sCT) induces more potent, longer lasting anorectic effects compared to amylin. We thus aimed to investigate whether AMY/CTR agonists target key neuronal populations in the ARC, and whether differing brain distribution patterns could mediate the observed differences in efficacy with sCT and amylin treatment. Brains were examined by whole brain 3D imaging and confocal microscopy following subcutaneous administration of fluorescently labelled peptides to mice. We found that sCT, but not amylin, internalizes into a subset of ARC NPY neurons, along with an unknown subset of ARC, AP and dorsal vagal motor nucleus cells. ARC POMC neurons were not targeted. Furthermore, amylin and sCT displayed similar distribution patterns binding to receptors in the AP, the organum vasculosum of the lamina terminalis (OVLT) and the ARC. Amylin distributed within the median eminence with only specs of sCT being present in this region, however amylin was only detectable 10 minutes after injection while sCT displayed a residence time of up to 2 hours post injection. We conclude that AMY/CTR agonists bind to receptors in a subset of ARC NPY neurons and in circumventricular organs. Furthermore, the more sustained and greater anorectic efficacy of sCT compared to rat amylin is not attributable to differences in brain distribution patterns but may more likely be explained by greater potency at both the CTR and AMY.
Keywords: Agonist; Amylin; Area postrema; NPY; Whole-brain 3D imaging.
Copyright © 2020 Elsevier Ltd. All rights reserved.