Agricultural development has resulted in the degradation of freshwater ecosystems worldwide. Two key stressors impacting streams and rivers draining agricultural catchments are deposited fine sediment (e.g. due to erosion) and reduced flows (e.g. due to water abstraction, dams, or climate change). Past studies have identified fine sediment as a 'master stressor' in streams, but the effects of different sediment grain sizes in combination with reduced flow velocity are poorly understood. We manipulated deposited fine sediment (no added sediment; silt: 0-0.125 mm; fine sand: 0.125-0.250 mm; coarse sand: 1-2 mm) and flow velocity (fast: 26.5 cm/s; medium: 13.9 cm/s; slow: 0.0 cm/s) simultaneously in 60 outdoor stream mesocosms. We determined the individual and combined effects of these stressors on the benthic, drifting, and emerging stream macroinvertebrate communities. Both fine sediment and reduced flow velocity had pervasive detrimental impacts on stream invertebrate communities. Negative effects of sediment were worse at the smaller two grain sizes for some responses (abundance of Chironomidae, Copepoda, Psilochorema spp.); however, for several sediment-sensitive common taxa or community-level invertebrate metrics, effects were negative regardless of grain size. Although their combined effects were mainly additive, sediment impacts were worsened by reduced flow velocities in several cases. Our findings imply that (a) especially for sediment-sensitive species, all fine sediment <2 mm has profound negative effects, (b) sediment grain size matters for some invertebrate taxa, where severity of impacts increased as particle size decreased, and (c) negative effects of sedimentation can become worse when combined with reduced flow velocity.
Keywords: Agricultural erosion; Antagonisms; Flow regime; Insect emergence; Invertebrate drift; Outdoor mesocosm experiment; Sediment deposition.
Copyright © 2020 Elsevier B.V. All rights reserved.