Tropical forests did not recover from the strong 2015-2016 El Niño event

Sci Adv. 2020 Feb 5;6(6):eaay4603. doi: 10.1126/sciadv.aay4603. eCollection 2020 Feb.

Abstract

Severe drought and extreme heat associated with the 2015-2016 El Niño event have led to large carbon emissions from the tropical vegetation to the atmosphere. With the return to normal climatic conditions in 2017, tropical forest aboveground carbon (AGC) stocks are expected to partly recover due to increased productivity, but the intensity and spatial distribution of this recovery are unknown. We used low-frequency microwave satellite data (L-VOD) to feature precise monitoring of AGC changes and show that the AGC recovery of tropical ecosystems was slow and that by the end of 2017, AGC had not reached predrought levels of 2014. From 2014 to 2017, tropical AGC stocks decreased by 1.3 1.2 1.5 Pg C due to persistent AGC losses in Africa ( - 0.9 - 1.1 - 0.8 Pg C) and America ( - 0.5 - 0.6 - 0.4 Pg C). Pantropically, drylands recovered their carbon stocks to pre-El Niño levels, but African and American humid forests did not, suggesting carryover effects from enhanced forest mortality.

Publication types

  • Historical Article
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ecosystem*
  • El Nino-Southern Oscillation* / history
  • Forests*
  • History, 21st Century
  • Spatial Analysis
  • Tropical Climate*