Background: Melanoma is one of the most aggressive, therapy-resistant skin cancers in the world. Hydrogen sulfide (H2S), a newly discovered gasotransmitter, plays a crucial role in the progression and development of many types of cancers. However, the effect of H2S on human skin melanoma remains to be elucidated.
Objective: We aimed to explore the effect of exogenous H2S on melanoma cells and its underlying mechanisms.
Methods: In this study, human skin melanoma cell lines, including A375 and SK-MEL-28, were treated with a donor of H2S (NaHS). CCK-8, scratch assay, flow cytometric analysis, western blotting and transmission electron microscopy (TEM) were performed to explore the effects of H2S on cell behaviors.
Results: Treatment with NaHS inhibited cell proliferation, migration and division, while it could induce cell apoptosis and autophagy in melanoma cell lines. Moreover, NaHS significantly decreased the expression of p-PI3K, p-Akt and mTOR proteins. Furthermore, insulin-like growth factor-1 (IGF-1), the activator of PI3K/AKT/mTOR pathway, could reverse the cell behaviors caused by NaHS.
Conclusion: Our results demonstrated that exogenous hydrogen sulfide could inhibit human melanoma cell development via suppression of the PI3K/AKT/mTOR pathway. Hydrogen sulfide might serve as a potential therapeutic option for melanoma.
Keywords: Hydrogen sulfide; Melanoma; PI3K/AKT/ mTOR pathway.
Copyright © 2020 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.